We develop the gauge theory introduced by Ning Wu with two Yang-Mills fields adjusted to make the mass term invariant. In the specific representation there arise quantum massive and classical massless no-Abelian vector modes and the gauge interaction terms. The suggested model will return into two different Yang-Mills gauge field models. Next, we focus on calculating `the meet of the propagators' of those quantum massive and classical massless vector fields with respects to the double Yang-Mills limit. We demonstrate that our proposed version of the Quantum Chromodynamics (QCD) predicts mass gap Δ > 0 for the compact simple gauge group SU (3). This provides a solution to the second part of the Yang-Mills problem.
Published in |
International Journal of High Energy Physics (Volume 2, Issue 4-1)
This article belongs to the Special Issue Symmetries in Relativity, Quantum Theory, and Unified Theories |
DOI | 10.11648/j.ijhep.s.2015020401.18 |
Page(s) | 104-111 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Gauge field Theories, Quantum Chromodynamics, Yang-Mills Problem
[1] | Young.C.N, Mills.R.L 1954 Conservation of isotopic spin and isotopic gauge invariance Phys.Rev. 96 191-195. |
[2] | Jaffe.A, Witten.E, 2000 Quantum Yang-Mills Theory www.claymath.org/millennium/Yang-MillsTheory/yangmills.pdf. |
[3] | Creutz.M 1980 Monte Carlo Study of Quantized SU (2) Gauge Theory, Phys. Rev. D21 2308–2315. |
[4] | Wilson.K.G 1975 Quarks and strings on a lattice, in New Phenomena In Subnuclear Physics, Proceedings of the 1975 International School of Subnuclear Physics, Erice, Sicily, ed. A.Zichichi, Plenum Press, New York . |
[5] | Wu.N 2003 Gauge Model with Massive Gravitons Preprint hep-th/0307003. |
[6] | Wu.N”Quantum Gauge Theory of Gravity” 2002 Devision of Particles and Fields Aps Williamsburg, Virgia USA. |
[7] | Wu.N Gauge Theory of Gravity 2001 Preprint hep-th/0109145. |
[8] | Wu.N Renormalizable Quantum Gauge Theory of Gravity 2002 Preprint hep-th/0207254. |
[9] | Wu.N Commun.Theor.Phys 2001 36 169. |
[10] | .Wu.N Commun.Theor.Phys 2002 38 577-582. |
[11] | Wu.N Commun.Theor.Phys 2002 38 151-156. |
[12] | Wu.N 1998 Some discussions on strong interaction Preprint hep-ph/9802297. |
[13] | Caso.C et al 1998 Particle Data Group, E. Phys. J. C3. 1. |
[14] | Dokshitzer.Y 1998 Talk presented at XXIXth International Conference on High Energy Physics, ICHEP98, Vancouver, CAS. |
[15] | Ellis.J, Kunszt.Z, Soper.D 1990 Phys. Rev. Lett. 64. 2121. |
[16] | Goldstone.J 1961 Nov.Cim.19 154. |
[17] | Namnu.Y, Lasinio.G.J 1961 Phys.Rev.122 34. |
[18] | Goldstone.J, Salam.A, Weinberg.S 1962 Phys.Rev.127 965. |
[19] | Higgs.P.W 1964 Phys.Lett.12 132. |
[20] | Englert.F, Brout.R 1964 Phys.Lett.13 321. |
[21] | Guralnik.G.S, Hagen.C.R, Kibble.T.W 1964 Phys.Lett.13 585. |
[22] | Higgs.P.W 1966 Phys.Rev.145 1156. |
[23] | Weinberg.S 1973 Phys.Rev.D7 1068. |
[24] | Yukawa.H 1935 Proc.Physic-Math.Soc.Japan 17, 48. |
[25] | Tomonaga.S 1946 Prog. of. Theo.Phys .1.2. |
[26] | Weinberg.S 1971 Gravitational and Cosmology John Wiley and Sons. |
[27] | Callaway.D,Rahman.A 1982 Microcanonical Ensemble Formulation of Lattice Gauge Theory Physical Review Letters 49: 613–616. |
[28] | Callaway.D, Rahman .A 1983 Lattice gauge theory in the microcanonical ensemble Physical Review D28: 1506–1514. |
[29] | Dürr.S, Fodor.Z, Frison.J et al. 2008 Ab Initio Determination of Light Hadron Masses Science 322 5905: 1224. |
[30] | Bazavov.A et al. 2010 Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks Reviews of Modern Physics 82: 1349–1417. |
[31] | Kostelecky, V.A, Russell, N. 2010 Data Tables for Lorentz and CPT Violation. Preprint hep-ph/08010287. |
[32] | Sozzi, M.S 2008 Discrete symmetries and CP violation. Oxford University Press. |
[33] | Griffiths, David J 1987 Introduction to Elementary Particles. Wiley, John & Sons. |
[34] | Streater.R.F, Wightman.A.S 1964 PCT, spin and statistics, and all that.Benjamin/Cumming. |
[35] | [D0 Collaboration], Abbott.B, et al. 1990 Phys. Rev. D 60 031 101. |
[36] | [D0 Collaboration], Abbott.B, et al 2001 Phys. Rev. D 63 091 102. |
[37] | Bilaniuk.O.-M. et.al 1962 "'Meta' Relativity" American Journal of Physics 30, 10 71. |
[38] | Feinberg.G 1967 "Possibility of Faster-Than-Light Particles" Physical Review 159 5, 1089. |
[39] | Giani.S 1998 On velocities beyond the speed of light c Preprint hep-ph/9712265. |
[40] | Adam.T et.al [OPERA Collaboraton] 2011 Measurement of the neutrino velocity with the OPERA detector in the CNGS beam Preprint hep-ex /1109.4897. |
[41] | Koorambas, E, Commun. Theor. Phys. 57 (2), 241-244, (2012), doi: 10.1088/0253-6102/57/2/14. |
[42] | Koorambas, E, Int J Theor Phys. 51 (10), 3127–3140, (2012), doi: 10.1007/s10773-012-1194-7. |
[43] | Koorambas.E, Int J Theor Phys 52 (7), 2235-2244, (2013), doi 10.1007/s10773-013-1499-1. |
[44] | Koorambas.E, Recent Developments in Bosons Research, chapter 2, ed.Ignace Tremblay, pp. 57-82, (Nova Science Publishers, Inc., New York, 2013- May). |
[45] | Koorambas, E, Int J Theor Phys, 52, (12), 4374–4388 (2013), doi: 10.1007/s10773-013-1756-3 |
[46] | Koorambas,E, Quantum. Matter, 3, (3), 215-218 (2014), doi:10.1166/qm.2014.1115. |
[47] | Kuzmenko, T.Yu.: In: Proceedings of Institute of Mathematics of NAS of Ukraine 2000, vol. 30, Part 2 pp. 501–506 (2000) |
[48] | Haywood.S, Symmetries and Conservation Laws in Particle physics 2011, Imperial College Press London UK |
[49] | Weinberg.S, The Quantum Theory Of Fields Vol.2 1996 Cambridge University Press NY USA |
APA Style
E. Koorambas. (2015). The Physics of Mass Gap Problem in the General Field Theory Framework. International Journal of High Energy Physics, 2(4-1), 104-111. https://doi.org/10.11648/j.ijhep.s.2015020401.18
ACS Style
E. Koorambas. The Physics of Mass Gap Problem in the General Field Theory Framework. Int. J. High Energy Phys. 2015, 2(4-1), 104-111. doi: 10.11648/j.ijhep.s.2015020401.18
@article{10.11648/j.ijhep.s.2015020401.18, author = {E. Koorambas}, title = {The Physics of Mass Gap Problem in the General Field Theory Framework}, journal = {International Journal of High Energy Physics}, volume = {2}, number = {4-1}, pages = {104-111}, doi = {10.11648/j.ijhep.s.2015020401.18}, url = {https://doi.org/10.11648/j.ijhep.s.2015020401.18}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijhep.s.2015020401.18}, abstract = {We develop the gauge theory introduced by Ning Wu with two Yang-Mills fields adjusted to make the mass term invariant. In the specific representation there arise quantum massive and classical massless no-Abelian vector modes and the gauge interaction terms. The suggested model will return into two different Yang-Mills gauge field models. Next, we focus on calculating `the meet of the propagators' of those quantum massive and classical massless vector fields with respects to the double Yang-Mills limit. We demonstrate that our proposed version of the Quantum Chromodynamics (QCD) predicts mass gap Δ > 0 for the compact simple gauge group SU (3). This provides a solution to the second part of the Yang-Mills problem.}, year = {2015} }
TY - JOUR T1 - The Physics of Mass Gap Problem in the General Field Theory Framework AU - E. Koorambas Y1 - 2015/08/07 PY - 2015 N1 - https://doi.org/10.11648/j.ijhep.s.2015020401.18 DO - 10.11648/j.ijhep.s.2015020401.18 T2 - International Journal of High Energy Physics JF - International Journal of High Energy Physics JO - International Journal of High Energy Physics SP - 104 EP - 111 PB - Science Publishing Group SN - 2376-7448 UR - https://doi.org/10.11648/j.ijhep.s.2015020401.18 AB - We develop the gauge theory introduced by Ning Wu with two Yang-Mills fields adjusted to make the mass term invariant. In the specific representation there arise quantum massive and classical massless no-Abelian vector modes and the gauge interaction terms. The suggested model will return into two different Yang-Mills gauge field models. Next, we focus on calculating `the meet of the propagators' of those quantum massive and classical massless vector fields with respects to the double Yang-Mills limit. We demonstrate that our proposed version of the Quantum Chromodynamics (QCD) predicts mass gap Δ > 0 for the compact simple gauge group SU (3). This provides a solution to the second part of the Yang-Mills problem. VL - 2 IS - 4-1 ER -