Nonlinear partial diferential equations are a class of partial diferential equations having many important uses in engineering and sciences. In this work we display a comparison between Adomian Decomposition Method (ADM) and Differential Quadrature Method (DQM) for solving some nonlinear partial diferential equations. We found the existence of exact solutions for those models. The numerical results show the efficiency and accuracy of this method.
Published in | American Journal of Applied Mathematics (Volume 3, Issue 3) |
DOI | 10.11648/j.ajam.20150303.12 |
Page(s) | 90-94 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2015. Published by Science Publishing Group |
Adomian Decomposition Method, Differential Quadrature Method, Nonlinear Partial Diferential
[1] | Al-saif A.S.J., (2007), “Numerical study for convection motion stability of the ncompressibletwo-dimensional fluid flow by differential quadrature method”, J.Basrah Researches(Sciences), Vol.33, No. 1. p.103-110. |
[2] | Leveque R.J., (2006), “Finite difference methods for differential equations” A Math. 585. winters Quarter, University of Washington version of January. |
[3] | Celik E., Bayram M. Yeloglu T., (2006), “Solution of differential–algebra Equations by Adomian decomposition method”, Inter. J. Pure and Appl. Math. Sciences, Vol.3, No.1, p. 93-100. |
[4] | Javidi M. and Golbabai A., (2007), “Adomian decomposition method for approximating the solution of parabolic equations”, J. Appl. Math. Sciences, Vol.1, No.5, p. 219-225. |
[5] | S.E. Serrano (2011). Engineering Uncertainty and Risk Analysis: A Balanced Approach to Probability, Statistics, Stochas-btic Modeling, and Stochastic Diferential Equations, Second Revised Edition, HydroScience, Ambler, PA. |
[6] | P.Y. Tsai and C.K. Chen (2010). An approximate analytic solution of the nonlinear Riccati diferential equation, J. Frank. Inst. 347 1850-1862. |
[7] | A.M. Wazwaz (2011). Linear and Nonlinear Integral Equations: Methods and Applications, Higher Education Press, Beijing, and Springer-Verlag, Berlin. |
[8] | J.S. Duan and R. Rach (2011). A new modi¯cation of the Adomian decomposition method for solving boundary value problems for higher order nonlinear diferential equations, Appl. Math. Comput. 218 ,4090-4118. |
[9] | A.M. Wazwaz and R. Rach, (2011) . Comparison of the Adomian decomposition method and the variational iteration method for solving the Lane-Emden equations of the ¯rst and second kinds, Kybernetes 40 ,1305-1318. |
[10] | A.M. Wazwaz (2012) . A reliable study for extensions of the Bratu problem with boundary conditions, Math. Methods Appl. Sci. 35 ,845-856. |
[11] | Seng V. Abbaoui K. Cherruault Y., (1996), “Adomian’s polynomial for nonlinear operators”, J. Math. Comput. Modeling, Vol. 24, No. 1, p.59-65. |
[12] | Bellman R., Kashef B.G. and Casti J., (1972), “Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations”, J.comput. Phys., Vol.10,No.1, p. 40-52. |
[13] | H. Hossainzadeh, G. A. Afrouziand A. Yazdani (2011). Application of Adomian Decomposition Method for Solving Impulsive Differential Equations. The Journal of Mathematics and Computer Science Vol .2 No.4 ,672-681. |
[14] | Bert C. W. and Malik M .(2014)." Differential quadrature method in computational mechanics ", A review : Appl. Mech. Rev., 49, 1-27. |
[15] | Shu C. , Chen W. and Du H.(2014)." Free vibration analysis of curvilinear quadrilateral plates by the DQ method", J. comput. Phys., 163, 452–466. |
[16] | Al–Saif, A.S.J. and Zhu, Z.Y (2002).'' Differential quadrature method for solving the coupledincompressible Navier-Stockes equations and heat equation", Proc. 4th Int. Confer. on Nonlinear Mech., Shanghai, 897-901. |
[17] | Ali A . N . H (2004). " Finite element methods to solve two-dimensional transport equation using modified Galerkin schemes ", M .Sc . thesis, Basrah University , Iraq. |
[18] | Al-Saif,A. S. J. and Zhu Z.Y. (2003)." Application of Mixed Differential quadrature method for solving the coupled tow-dimensional incompressible Navier–Stockes equation and heat equation ", J. of Shanghai University,7(4), 343 -351. |
APA Style
Zahra Adabi Firoozjae, Allahbakhsh yazdani. (2015). The Comparison Adomian Decomposition Method and Differential Quadrature Method for Solving Some Nonlinear Partial Diferential Equations. American Journal of Applied Mathematics, 3(3), 90-94. https://doi.org/10.11648/j.ajam.20150303.12
ACS Style
Zahra Adabi Firoozjae; Allahbakhsh yazdani. The Comparison Adomian Decomposition Method and Differential Quadrature Method for Solving Some Nonlinear Partial Diferential Equations. Am. J. Appl. Math. 2015, 3(3), 90-94. doi: 10.11648/j.ajam.20150303.12
AMA Style
Zahra Adabi Firoozjae, Allahbakhsh yazdani. The Comparison Adomian Decomposition Method and Differential Quadrature Method for Solving Some Nonlinear Partial Diferential Equations. Am J Appl Math. 2015;3(3):90-94. doi: 10.11648/j.ajam.20150303.12
@article{10.11648/j.ajam.20150303.12, author = {Zahra Adabi Firoozjae and Allahbakhsh yazdani}, title = {The Comparison Adomian Decomposition Method and Differential Quadrature Method for Solving Some Nonlinear Partial Diferential Equations}, journal = {American Journal of Applied Mathematics}, volume = {3}, number = {3}, pages = {90-94}, doi = {10.11648/j.ajam.20150303.12}, url = {https://doi.org/10.11648/j.ajam.20150303.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajam.20150303.12}, abstract = {Nonlinear partial diferential equations are a class of partial diferential equations having many important uses in engineering and sciences. In this work we display a comparison between Adomian Decomposition Method (ADM) and Differential Quadrature Method (DQM) for solving some nonlinear partial diferential equations. We found the existence of exact solutions for those models. The numerical results show the efficiency and accuracy of this method.}, year = {2015} }
TY - JOUR T1 - The Comparison Adomian Decomposition Method and Differential Quadrature Method for Solving Some Nonlinear Partial Diferential Equations AU - Zahra Adabi Firoozjae AU - Allahbakhsh yazdani Y1 - 2015/04/16 PY - 2015 N1 - https://doi.org/10.11648/j.ajam.20150303.12 DO - 10.11648/j.ajam.20150303.12 T2 - American Journal of Applied Mathematics JF - American Journal of Applied Mathematics JO - American Journal of Applied Mathematics SP - 90 EP - 94 PB - Science Publishing Group SN - 2330-006X UR - https://doi.org/10.11648/j.ajam.20150303.12 AB - Nonlinear partial diferential equations are a class of partial diferential equations having many important uses in engineering and sciences. In this work we display a comparison between Adomian Decomposition Method (ADM) and Differential Quadrature Method (DQM) for solving some nonlinear partial diferential equations. We found the existence of exact solutions for those models. The numerical results show the efficiency and accuracy of this method. VL - 3 IS - 3 ER -